
Journal of Global Optimization 10: 37–55, 1997. 37
c 1997 Kluwer Academic Publishers. Printed in the Netherlands.

The Hyperbell Algorithm for Global Optimization:
A Random Walk Using Cauchy Densities

PIERRE COURRIEU
CREPCO (URA CNRS 182), Université de Provence 29 avenue Robert Schuman, F-13621
Aix-en-Provence Cedex 1, France

(Received: 16 May 1995; accepted: 28 May 1996)

Abstract. This article presents a new algorithm, called the “Hyperbell Algorithm”, that searches
for the global extrema of numerical functions of numerical variables. The algorithm relies on the
principle of a monotone improving random walk whose steps are generated around the current
position according to a gradually scaled down Cauchy distribution. The convergence of the algorithm
is proven and its rate of convergence is discussed. Its performance is tested on some “hard” test
functions and compared to that of other recent algorithms and possible variants. An experimental
study of complexity is also provided, and simple tuning procedures for applications are proposed.

Key words: global optimization, random search, Cauchy distributions.

1. Introduction

Optimization problems vary in difficulty, depending on the properties of the func-
tion to be optimized. Uniextremal functions are generally the easiest to optimize
because “local search” procedures can be used. These procedures, such as usual
gradient based methods among others, are efficient and guarantee finding the solu-
tion. But many functions encountered in practice have multiple extrema, making
it necessary to use “global search” methods, which can generally only guarantee
finding the solution with a given degree of probability. Extensive efforts have
been made within the past few years to solve hard optimization problems (see
Horst & Pardalos, 1995). Certain recent methods are deterministic (Baritompa,
1993; Breiman & Cutler, 1993; Wood, 1992), but they will not be considered
here. Most of the known approaches in global optimization are based on stochas-
tic processes (see Zhigljavsky, 1991). Certain algorithms rely on the principle of
a random walk converging to an extremum of the objective function (Dekker &
Aarts, 1991; Romeijn & Smith, 1994; Solis & Wets, 1981; Zabinsky et al., 1993).
In other methods, global distributions of probabilities represented by samples of
points (“populations”) belonging to the search domain are made to converge (Cour-
rieu, 1993; Goldberg, 1989; Holland, 1975). In still other methods, convergence
is achieved by the global distribution control of a set of local searches (Boen-
der, 1982; Rinnooy Kan & Timmer, 1987a, 1987b). Branch-and-Bound methods
(Pintér, 1988; Zhigljavsky, 1991) construct a partition of the search domain and



38 PIERRE COURRIEU

sequentially reject those subsets which have the lowest probability of containing a
global optimum. Other approaches exist, although many of them appear to be more
interesting from a theoretical than practical point of view.

Presented below is a new stochastic global optimization algorithm, which will
be called the “Hyperbell Algorithm”. This algorithm relies on the principle of a
monotone improving random walk whose steps are generated around the current
position according to an n-dimensional Cauchy distribution which is gradually
scaled down. The name “Hyperbell” refers to the shape of the probability density
function. The algorithm is applicable to the search for the global extrema of a
numerical function f defined on a bounded domain 
 of Rn . It is of interest
to situate this approach within the theoretical framework proposed by Solis and
Wets (1981) because the Hyperbell Algorithm is compatible with their “conceptual
algorithm”. The choice of Cauchy distributions is motivated by the search for a
good compromise between the speed and the guarantee of convergence. As pointed
out by Solis and Wets, guaranteeing convergence requires that the sampling strategy
must not indefinitely ignore any subset (which has a positive Lebesgue mesure) of
the search domain . Using a uniform distribution on the whole search domain would
satisfy this requirement, but unfortunately this leads to very slow convergence. In
order to improve the speed of convergence, a common strategy is to gradually
concentrate the search on the most “promising” regions. This is the strategy of
Branch-and-Bound methods, for example, but the definitive rejection of certain
subsets of the search domain does not enable one to guarantee convergence in
all cases. Hence, we must concentrate the search on certain subsets while not
completely ignoring any subset of the search domain. This can be done by using a
bell- shaped probability density of sampling centered on the current position in the
search domain, and whose scale can be controlled. Certain common bell-shaped
densities, like Gauss or logistic densities, decrease exponentially as the distance
from their center increases (in scale units). Hence, the density rapidly tends to
zero after a certain distance, resulting in a distribution whose support is “quasi-
bounded”, and whose behavior for finite samplings is very similar to that of bounded
support distributions. This results in a relatively high probability for the search to
be trapped in local extrema basins of many functions, and there is poor guarantee
of convergence in practice. Cauchy densities are more appropriate because the
density decreases very slowly as the distance from the center of the distribution
increases. Hence the probability of sampling is truly non-zero for any subset of
the search domain which has a non-zero Lebesgue mesure. The position and the
quartile deviations of Cauchy densities are easy to control in order to concentrate
the search on appropriate regions. Note that the use of Cauchy distributions was
previously shown to be more effective than the use of exponential distributions
in the framework of Simulated Annealing algorithms (see Ingber, 1989; Ingber &
Rosen, 1992). However, the Hyperbell algorithm is monotonically improving and
does not use any concept equivalent to the “temperature” of Simulated Annealing.



THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 39

2. Hyperbell Algorithm

The algorithm is presented in Pseudo-Pascal. The term “random”, followed by an
interval, denotes a random value taken from a uniform distribution of probabilities
on the specified interval. The algorithm shown here concerns the search for minima
of a function defined on a bounded feasible region 
 of Rn (remember that the
search for maxima of a function f is equivalent to the search for minima of �f ).
In order to initialize the Cauchy distribution scales (s1; s2; . . . ; sn), it is useful to
determine the upper and lower boundary of each variable such that ai 6 xi 6 bi
and 
 is included in the hyperrectangle

Qn
i=1[ai; bi].

fParameters:
� 2 [0:8; 1) : scale reduction parameter;
" > 0 : arbitrarily small constant;
DLS : variant selectorg

fScale initialization (indicative example)g
for i := 1 to n do si :=

bi � ai

2tg(�(0:5)1=n=2)
;

fStarting pointg
repeat
for i := 1 to n do xi := random [ai; bi];
until (X 2 
);

fSearchg
repeat

repeat
for i := 1 to n do yi := si tangent(� random(�1=2; 1=2)) + xi ;

until (Y 2 
);
if DLS then Y := Y � rrf(Y ); fcompute r using a bisection methodg
if f(Y ) < f(X) then X := Y else for i := 1 to n do si := �(si � ") + ";

until (stopping rule);

The Parameters

The parameter � is the reduction coefficient of Cauchy’s distribution scale, when
this scale is reduced. Increasing � lowers the speed of convergence and the prob-
ability of being trapped in local minima of complex functions. Note that function
complexity should not be assessed solely on the basis of the number of local
extrema. We shall see in the experimental section below that there are functions
with an infinite number of local minima which are easy to optimize with the Hyper-
bell Algorithm. The parameter " has little effect in practice, but it guarantees that
the si scales will not drop to zero and thereby prevents the process from freezing



40 PIERRE COURRIEU

indefinitely. " is arbitrarily small and it is generally chosen to be smaller than the
desired precision for the result in 
 .

About Scale Initialization

The example of scale initialization given in the algorithm statement corresponds
to a probability of 1/2 of generating a new point inside the critical hyperrectangle
if the starting point is the center of this hyperrectangle. This choice may seem
somewhat arbitrary, however it was empirically found to be usually appropriate.
Note that " must be chosen to be smaller than the initial scales.

Generation of Points

The coordinates of the sampled points are generated independently by means of
the generating function: yi = sitg(�ui) + xi, with ui taken at random from a
uniform distribution on (�1=2; 1=2). The random variable defined as such obeys
an n-dimensional Cauchy law with the density:

gn(Y ;X;S) =
nY
i=1

1
�si

1

1 +

�
yi � xi

si

�2 :

The point X is the center of the distribution (the xi’s are the modes and medians of
the marginal distributions), and corresponds to the current position of the random
walk in the search domain. The scale parameters si are the quartile deviations.
Cauchy’s law has no moments, and in particular its variance is infinite, which is
a reflection of the fact that the density decreases slowly and is never negligible.
Given that points generated outside
 are rejected, the density is in fact a conditional
distribution, denoted h, given by:

hn(Y ;X;S) =
gn(Y ;X;S)R


 gn(Z;X;S) dZ
> gn(Y ;X;S); for Y 2 
;

hn(Y ;X;S) = 0; for Y 62 
:

DLS Variant

Certain functions to be optimized have special properties, making the use of par-
ticular local transformations of the generated points interesting. One of these trans-
formations, which we will refer to as the “Directional Local Search” (DLS) variant,
consists simply of one standard local search step: Y := Y � rrf(Y ), where the
step length r is positive, and is determined using a standard bisection method (see
Zhigljavsky, 1991, pp. 21–22) with the constraint that Y 2 
 . The gradient cal-
culation supposes that the function is C1 continuous and is easily derivable, but



THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 41

an approximation can also be used by replacing the partial derivatives with the
corresponding finite increase ratios.

Stopping Rules

Various stopping rules can be used, depending on the requirements for the appli-
cation. One can simply limit the number of function calls (consumption criterion),
or wait until the generation scales are close to " (precision criterion on 
).

Convergence

THEOREM 1. Let f be a function defined on a bounded subset 
 of Rn . Let
Xt 2 
 be the point generated by the Hyperbell Algorithm at time t of the
search for a minimum of f on 
. If f is continuous at a global minimum then:
8� > 0; limk!1 Probf9t 6 k; jf(Xt) � minX2
 f(X)j < �g = 1. (Replace
“min” with “max” for a maximum search).

Proof.
(1)- 8i 6 n; si(t+ 1) > �(si(t)� ") + ") 8i 6 n;8t; si(t) > " > 0.
(2)- If 
 is bounded then 8X;Y 2 
; kY �Xk <1 .
(3)- (1) and (2) ) 9� > 0;8t;8X;Y 2 
;hn(Y ;X;S(t)) > � .
(4)- Set 
� = fY 2 
; jf(Y )�minZ2
 f(Z)j < �g,

let � be the Lebesgue measure on the subsets of Rn , if f is continuous at a
global minimum then 8� > 0;�(
�) > 0.

(5)- (3) and (4) ) R

�
hn(Y ;X;S) dY > ��(
�) > 0.

(6)- (5) ) 8� > 0;Probf9t 6 k; jf(Xt) � minX2
 f(X)j < �g > 1 � (1 �
��(
�))

k.
(7)- Finally limk!1 1� (1� ��(
�))

k = 1, which completes the proof. E

The situation is very similar using the DLS variant of the algorithm, since this
variant is only an additional process which locally favours sampling the best
points.

One can also use the global search convergence theorem of Solis and Wets
(1981) since the Hyperbell Algorithm is clearly a case of their “conceptual algo-
rithm” and it satisfies their conditions H1 and H2. The condition H1 is trivially
satisfied by the acceptance rule of steps. Proving H2 is quite similar to the above
proof, where one replaces 
� by any subset of 
 with non-zero Lebesgue mesure.

Concerning the rate of convergence with Cauchy distributions, one can use
equation 11 from Ingber (1989), or Ingber and Rosen (1992), and conclude that
it is a sufficient condition, for obtaining stochastic convergence in any problem,
that the scales decrease no faster than s(0)=t1=n. However, this limit rate does
not take into account properties of the problem other than the dimension (n), and
faster convergence can almost always be obtained in practice. This usually requires
the use of “free parameters”, like � for the Hyperbell algorithm whose stochastic



42 PIERRE COURRIEU

convergence was stated above. Let " tend to 0, then the ith scale at time t is
approximately equal to si(0)�t�w(t) , where w(t) is the number of improving steps
at time t. Clearly, the convergence rate has an exponential form, but it depends
on the frequency of winning trials. The scales at a given stage of the process tend
to stabilize as long as they are productive of improving steps, and they rapidly
decrease when the frequency of winning trials decreases. The choice of � depends
on the properties of the problem to be solved. Unfortunately, the author does not
know any theory which would enable this choice to be generally optimized. To
date, the most usual method consists of empirically determining an �-function
appropriate to the class of problems to be solved in a given application. This is
not generally difficult, but the cost of the tuning procedure has to be added to the
implementation cost.

3. Experimental Study of Performance

Box-Constrained Test Functions

Presented below is an experimental study of the performance of the Hyperbell
Algorithm on some hard minimization problems. Most test functions used in the
current literature have only a small number of local extrema, which severely
limits the scope of the tests (see, however, Floudas & Pardalos, 1990). We were
nevertheless able to find two families of standard hard functions for the test:
Csendes functions (Csendes, 1985; see also Zhigljavsky, 1991, p. 16) and Griewank
functions (Griewank, 1981; see also Rinnooy Kan & Timmer, 1987b, p. 76). A third
family of hard functions, previously used by Courrieu (1993), was also selected.
This family will be called the W functions. The three families of functions were
used with 2 and 10 variables in the comparative study. They were used with 10
variables in the study of densities. Only the W family was used in the complexity
study.

Csendes test functions

Cn(X) =

nX
i=1

x6
i

�
2 + sin

1
xi

�
; �1 6 xi 6 1:

Contrary to what might appear, this function is defined at X = 0, precisely
where it has its unique global minimum (0). The function possesses a countable
infinity of local minima on the search domain, and the oscillation frequency tends
towards infinity on the neighborhood of the global solution. This property makes it
practically impossible to minimize by applying local searches. However, Csendes
functions have the following feature: they oscillate between two convex “hulls”
which approach each other on the neighborhood of the solution.



THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 43

Note: what we refer to as a “hull” of a function is a hypersurface which joins
all the extrema of the same type (maxima or minima) of the function, and which
itself has the minimum number of extrema.

W functions

Wn; k(X) =
1
n

nX
i=1

1� cos(kxi) exp(�x2
i =2); �� 6 xi 6 �:

W functions have their unique global minimum (0) at X = 0. The number of
local minima on the search domain is kn (for k odd) or (k + 1)n (for k even).
Only k = 10 was used in the comparative study, which gave 121 local minima
for n = 2, and more than 2:59 � 1010 local minima for n = 10. The function
oscillates between two hulls of constant mean (= 1) whose distance from each
other is maximal on the neighborhood of the solution.

Griewank test functions

Gn(X) = 1 +

nX
i=1

x2
i=d�

nY
i=1

cos(xi=
p
i);

For n = 2 : d = 200;�100 6 xi 6 100. For n = 10 : d = 4000;�600 6 xi 6

600. These functions have their unique global minimum (0) at X = 0, and have a
large number of local minima. They have many “trap” basins on a large area around
the solution. However, in the neighborhood of certain points, Griewank functions
have some special directional local properties. To get an idea of these properties,
assign one of the variables a value like xi = (2k + 1)�

p
i=2; k 2 Z . In this case,

the partial derivatives for all other variables point to the solution, which is a stable
attractor for the variables that reach its neighborhood.

Comparative Study for Box-Constrained Problems

Reference algorithms

Because the experimental results for problems like these are rare in the literature,
three reference algorithms were used.

Simulated Annealing: We chose the Dekker and Aarts (1991) algorithm, which is
a recent version of the Simulated Annealing algorithm adapted to numerical spaces.
It is like a sequential Multistart algorithm in that it uses multiple directional local
search steps, whose global distribution is governed by a simulated annealing rule.
The algorithm was implemented in compliance with the indications provided by the
authors, except that the stopping rule was simplified in an experimentally adapted
way. This rule was replaced by a “temperature” thresholding, involving a complete
local search starting from the best point found whenever the temperature fell below



44 PIERRE COURRIEU

10�8. For the test functions used, this order of magnitude for the temperature was
indeed found to correspond to a “freezing” point in the process, after which no
progress was observed. We used the tuning values proposed by the authors (namely:
�0 = 0:9; L0 = 10; t = 0:75), with m0 = 100, except for the speed parameter
that usually had to be reduced since a � of 0.1 proved to be unsuitable to problems
this difficult. To determine �, a trial and error procedure was used to obtain 10
successive runs with no error in the result for each problem. This search succeeded
for three out of six problems (W2, G2, G10), but it was impossible to obtain an
exact result for the remaining problems, even once. The value used for �, then, was
simply the minimum value found in those problems which were solved (0.005).

Improving Hit-and-Run: we chose the algorithm proposed by Zabinsky et al.
(1993) (see also Romeijn & Smith, 1994). It is a converging random walk algorithm
which generates an asymptotically uniform distribution on the feasible region, and
it was implemented as it is described by the authors (with H = I). No tuning
is necessary for the Improving Hit-and-Run algorithm, and the stopping rule was
fixed at 500000 evaluations of the function.

Distributed Search: this algorithm proposed by Courrieu (1993) was chosen
because it uses Cauchy distributions like the Hyperbell Algorithm, but it is not a
random walk. The Distributed Search uses a population of M points in the feasible
region, each of them being the center of a Cauchy distribution. The convergence is
obtained by estimating the most appropriate positions and scales of the M distri-
butions at successive stages of the search. The speed of convergence is controlled
by a parameter (�), and the algorithm has a DLS variant which is quite similar
to that of the Hyperbell Algorithm. To determine M;� and the eventual necessity
of applying the DLS variant, a trial and error procedure was used to obtain 10
successive runs with no error in the result for each problem.

Tuning the Hyperbell Algorithm

The Hyperbell Algorithm parameter�was also estimated by trial and error until we
obtained 10 successive runs with no error in the result of any of the problems. This
criterion obviously did not imply that the probability of error was equal to zero,
which a priori is impossible in finite time. The results were considered exact (for
all algorithms) when the process found a function minimum equal to 0, within the
precision range of the compiler (TURBO-PASCAL 5.0 on a COMPAQ Deskpro
486 computer). The parameter " was set at 10�20. The DLS variant was applied
only if the tuning procedure failed without it (this occured only for the function
G10).

Results

The results are presented in Table I. For each algorithm and each problem, the table
gives the values of the tuning parameters and the mean number of function calls



THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 45

Table I. Tuning, and mean performance (with standard deviation) on 10 successive runs for the
four algorithms and six test functions.

TESTED ALGORITHMS
Dekker & Zabinsky Courrieu Hyperbell
Aarts (1991) et al. (1993) (1993) Algorithm

C2 tuning � = 0.005 – M=100,� =1.00 � = 0.93
f calls 46549 (13149) 287292 (100493) 7028 (949) 663 (21)
f error 3.38E–15 (1.01E–14) 5.49E–30 (1.11E–29) No error No error
X error 2.42E–03 (1.65E–03) 8.14E–06 (5.60E–06)

C10 tuning � = 0.005 – M=200,� =1.00 � =0.993
f calls 430301 (41406) 465682 (31070) 89453 (2304) 6621 (88)
f error 1.30E–10 (1.18E–10) 2.03E–23 (1.79E–23) No error No error
X error 3.76E–02 (4.76E–03) 2.47E–04 (5.21E–05)

W2 tuning � = 0.005 – M=100,� =0.75 � =0.99
f calls 29485 (11534) 363364 (108840) 4161 (371) 2313 (41)
f error No error 2.71E–08 (3.09E–08) No error No error
X error 2.75E–05 (1.88E–05)

W10 tuning � = 0.005 – M=250,� =0.75 � =0.99978
f calls 221752 (29660) 496511 (4753) 119799 (2617) 105723 (899)
f error 0.210 (0.028) 0.372 (0.058) No error No error
X error 2.927 (0.494) 4.187 (0.936)

G2 tuning � = 0.005 – M=150,� =0.80 � =0.995
f calls 52793 (4741) 402978 (98100) 5712 (393) 4687 (93)
f error No error 6.38E–07 (6.92E–07) No error No error

with DLS
X error 1.21E–03 (6.27E–04)

G10 tuning � = 0.01 – M=300,� =0.60 � =0.995, DLS
f calls 251870 (10208) 471011 (31388) 205584 (4084) 106799 (10583)
f error No error 0.161 (0.106) No error No error

with DLS
X error 23.98 (8.12)

for the 10 runs (f calls). Each gradient calculation was counted as a calculation
of the function. This is particularly justified in the case of separable functions
where the calculation cost of the gradient is very close to the calculation cost of
the function. Also given are the mean error on the function value (f error) and the
mean Euclidean distance between the best point found and the global minimizer (X
error). Standard deviations (with 9 degrees of freedom) are shown in parentheses
to the right of the corresponding means.



46 PIERRE COURRIEU

Table II. Performance of the random walk using Gauss and
logistic densities for three test functions (ten successive
runs).

f Gauss density Logistic density

C10 tuning � = 0.989 � = 0.99
f calls 4305 (66) 4705 (58)

No error No error

W10 tuning � = 0.9999 � = 0.9999
f calls 250781 (10306) 247011 (11470)
f error 0.293 (0.082) 0.268 (0.063)
X error 3.492 (0.951) 3.397 (0.773)

G10 tuning � = 0.99, DLS � = 0.99, DLS
f calls 59094 (1667) 58922 (2187)

No error No error

The results are quite clear. The Hyperbell Algorithm solved all the problems
with the smallest number of function evaluations. The most difficult function for
the algorithm was G10 whose optimization clearly required the DLS variant. With-
out the DLS variant, the process frequently became trapped by local minima. Note
that the minimization of Griewank functions is relatively easy for the Dekker and
Aarts (1991) algorithm; this is logical given its strong directional local component.
However, note also that Rinnooy Kan and Timmer (1987b) reported some disap-
pointing results concerning the minimization of the same Griewank functions by
a “Multi Level Single Linkage” algorithm. The Zabinsky et al. (1993) algorithm
found good approximations of the minimum for functions C2, C10, W2 and G2, but
the convergence was slow. The Distributed Search method found the exact solution
for all the problems, but as one can see in Table I, that algorithm converges much
slower than the Hyperbell Algorithm.

Study of Densities: Using Other Bells

The functions C10, W10 (with k = 10) and G10 were used for testing the perfor-
mance of the random walk when one replaces the Cauchy density with gradually
scaled down Gauss and logistic densities. Approximations of Gaussian variables
were generated using a sum of 12 independent uniform random variables. Each of
the 10 standard deviations was initialized at si(0) = (bi � ai)=3:664, given that
Probfjzj < 3:664=2g = 0:51=10. Logistic random variables were generated using
the formula yi = �si Ln(1=ui � 1) + xi, with ui taken at random from a uniform
distribution on (0,1), and si(0) = (bi � ai)=2(�Ln(2=(1 + 0:51=n)� 1)); n = 10.
The tuning procedure was similar to that employed for the Hyperbell Algorithm
with Cauchy densities. Means and standard deviations of performance on ten suc-



THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 47

Table III. Tuning of the Hyperbell Algorithm and mean number of function calls (with
standard deviation) as a function of the number of variables (ten successive runs without
error).

Number of Tuning (�) Function Number of Tuning (�) Function
variables calls variables calls

3 0.9500 504 (18) 18 0.9949 5045 (205)
6 0.9810 1339 (66) 21 0.9958 6002 (146)
9 0.9870 1982 (73) 24 0.9965 7247 (262)

12 0.9910 2875 (113) 27 0.9971 8786 (350)
15 0.9938 4127 (133) 30 0.9973 9529 (376)

cessive runs are presented in Table II. As one can see, Gauss and logistic densities
provided good performance on function C10, and also on function G10 with the
DLS variant. However, it was impossible to solve the W10 problem, even once,
using Gauss or logistic densities. Clearly, the use of exponential densities does
not lead to algorithms as robust as the Hyperbell Algorithm with Cauchy densities.
The behaviour of exponential densities looks like the behaviour of bounded support
densities, they provide fast but uncertain convergence. In contrast, approximations
of uniform densities (e.g. Improving Hit-and-Run) provide slow, truly guaranteed
convergence. The use of Cauchy densities allows for a good compromise between
speed and accuracy requirements.

Complexity Study

The behaviour of the Hyperbell Algorithm was studied varying two usual factors
of complexity: the number of variables and the number of minima. The W test
function family was used since these complexity factors are easy to control for
these functions.

Effect of the number of variables: For this study, the W test function was used
with k = 0 and a number of variables varying from 3 to 30 (step 3). This is a
set of ten uniminimal functions. The tuning procedure of the Hyperbell Algorithm
was similar to that employed in the preceding studies. Results are presented in
Table III. The number of function calls (t) increased as a function of the number
of variables (n). This function was close to linear. The best regression equation
is t = 343:4n1:3 � 922, with a very high correlation coefficient r = 0:997. A
simple linear regression gave r = 0:994. The tuning was very well predicted by
the relation � = 0:2064(1� n�1:3) + 0:7934; r = 0:999.

Effect of the number of minima: For this study, the W test function with n = 1
and 13 even values for k was used, giving a range of 1 to 101 minima. Results
are presented in Table IV. As one can see, the number of function calls increased
monotonically as a function of the number of minima (m). The best simple relation
which was found is t = 47:83m0:87 + 156:97; r = 0:968. However, this type of



48 PIERRE COURRIEU

Table IV. Tuning of the Hyperbell Algorithm and mean number of function calls (with
standard deviation) as a function of the number of minima (ten successive runs without
error).

Number of Tuning (�) Function Number of Tuning (�) Function
minima calls minima calls

1 0.820 134 (15) 15 0.9720 764 (64)
3 0.830 149 (17) 17 0.9725 823 (28)
5 0.860 178 (10) 19 0.9730 826 (16)
7 0.940 372 (30) 21 0.9736 867 (43)
9 0.965 629 (36) 51 0.9800 1173 (40)

11 0.969 672 (73) 101 0.9923 2956 (126)
13 0.971 758 (47)

relation cannot be generalized without caution since we have seen that it is easy for
the Hyperbell Algorithm to minimize Csendes functions, which have theoretically
an infinity of minima. In fact, we have to suspect that the number of minima per
se is not relevent, but that it is linked to more relevent caracteristics in the case of
W functions.

Comparative Study for Nonlinearly Constrained Problems

The Hyperbell algorithm was initialy designed for searching global extrema of mul-
tiextremal functions defined on simple box-constrained feasible regions. However,
certain recent global optimization algorithms are designed for solving optimiza-
tion problems on feasible regions with relatively complex constraints (Zabinsky
et al., 1993; Romeijn & Smith, 1994). Hence, it appeared interesting to complete
this experimental study with standard nonlinearly constrained problems. The two
most difficult nonlinearly constrained problems used by Romeijn & Smith (1994)
were selected (problem 1 and 2, pp. 119–120). These authors reported the best
performance which was obtained with Hide-and-Seek type algorithms (including
Improving Hit-and-Run) for solving these problems with a precision of 1%. For
comparison, the same precision criterion (stopping rule) was used in the present
study. Table V presents the mean number of constraint evaluations necessary for
finding an initial point inside the feasible region (i.c.e), the mean number of func-
tion evaluations (f.e.), and the mean number of constraint evaluations (c.e.). These
means were obtained with 20 successive runs, and the corresponding standard
deviations are given in parentheses for the Hyperbell algorithm. Results concern-
ing the Hide- and-Seek algorithm are taken from Romeijn & Smith (1994). As one
can see, the Hide-and-Seek algorithm found an initial feasible point faster than the
Hyperbell algorithm for problem 2. Hide-and-Seek algorithm has a special proce-
dure for finding an initial feasible point. When the constraint function defines a
subset with relatively low Lebesgue mesure, this procedure is more effective than



THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 49

Table V. Mean performance (with standard deviations) for 20
successive runs on two nonlinearly constrained problems solved
with 1% precision.

Hyperbell Romeijn & Smith (1994)
Problem 1 � = 0.992
i.c.e 6.55 (6.39) 10.1
f.e. 329.75 (131.70) 530.6
c.e. 744.90 (276.10) 1876.3

Problem 2 � = 0.990
i.c.e. 835.85 (770.82) 158.1
f.e. 168.95 (51.30) 281.9
c.e. 8323.45 (2730.87) 13893.1

the very simple initialization procedure of the Hyperbell algorithm. However, this
was the only advantage of Hide-and-Seek in the present experiment, and globally,
the Hyperbell algorithm always solved the problems faster.

4. Tuning Procedures for Applications

Tuning the algorithm for standard test problems is quite easy because the exact
solution of these problems is known a priori. However, this is not the case, in
general, for realistic applications. Moreover, certain applications require strict
control of computational effort, and more or less precision (or reliability) for
the result. Usually, the tuning is performed at the time of implementation (“off-
line tuning”). In this case, one must determine an � value or an �-function (of
complexity variables) that properly generalizes to the (infinite) set of problems
which the application should be able to solve. However, in certain cases, it is not
possible to find an appropriate �-function for the entire set of potential problems.
Such a situation requires the use of an “on-line tuning” procedure. To date, we
do not know of any general tuning method with low computational cost. In this
section, we first examine the behavior of the algorithm as a function of its tuning.
Based on the resulting observations, examples of simple tuning procedures are
defined and experimental results are presented.

Test Problem

For this study, we selected a family of problems which has practical applications
and whose exact solution is not known to date. This is the so called “elliptic Fekete
points’ problem (of order d)” (Pardalos, 1995; Shub & Smale, 1993):

global max fd(x) =
Q

16i6j6d kxi � xjk; x 2 R
3d ;

subject to kxik = 1; i = 1; :::; d:



50 PIERRE COURRIEU

Table VI. Behavior of the Hyperbell Algorithm (means and stan-
dard deviations for 10 runs) as a function of � for a 12 Fekete
points’ problem.

� Maximum of f12 found Solving time

0.8 1.78405E+8 (3.46344E+8) 392 (15)
0.9 4.62357E+8 (4.25513E+8) 810 (34)
0.95 1.55778E+9 (2.98085E+8) 1607 (44)
0.975 2.05888E+9 (1.12839E+8) 3166 (61)
0.9875 2.19609E+9 (1.00874E+8) 6192 (132)
0.99375 2.35477E+9 (6.96366E+7) 12275 (225)
0.996875 2.40710E+9 (2.66601E+7) 22209 (2480)
0.9984375 2.41785E+9 (0) 25802 (5062)
0.99921875 2.41785E+9 (0) 54298 (6732)
0.999609375 2.41785E+9 (0) 91316 (21832)

� Frequency of winning trials Time to stop

0.8 0.491 (0.020) 395 (15)
0.9 0.477 (0.021) 816 (32)
0.95 0.459 (0.014) 1619 (42)
0.975 0.446 (0.009) 3198 (50)
0.9875 0.430 (0.010) 6262 (108)
0.99375 0.425 (0.008) 12434 (179)
0.996875 0.370 (0.055) 22880 (1902)
0.9984375 0.031 (0.006) 29599 (192)
0.99921875 0.011 (0.001) 58010 (85)
0.999609375 0.004 (0.001) 115301 (81)

The constraint defines a set of zero mesure in R3 (the unit sphere surface). Hence
we have to use a projection of R3 points on S2:

xi := zi=kzik; zi 2 [�1; 1]3n0:

In doing this, all points zi generated along a given radial direction are equivalent,
the number of independent variables theoretically reduces to 2d, and one can easily
verify that the convergence properties of the Hyperbell Algorithm are not modified.

Effects of Tuning

In order to illustrate a typical behavior of the Hyperbell Algorithm as a function
of � , a 12 Fekete points’ problem was approximately solved with 10 different
values of � according to: �k+1 = (�k+1)=2; �0 = 0:8; k = 0; :::; 9. The stopping
criterion was s(t) 6 1:10"; " = 10�20 , and 10 runs were performed for each �

value. Table VI reports the means (and standard deviations) of the maximum found
for the objective function, the solving time (number of function calls for finding



THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 51

the result), the frequency of winning trials at stopping criterion, and the time to
stop (number of function calls for reaching the stopping criterion).

One can see in Table VI that the approximation of the function global maximum
is improved as � increases, and that one obtains a stable result (with variance close
to 0) after a critical value of � is reached. The computational cost monotonically
increases, and the frequency of winning trials decreases as a function of � . Note
also that the mean frequency of winning trials is lower than 1/2 for usual values
of �(> 0:8). A stable result can be considered as the best solution which can be
provided by the algorithm in the limit of a given computational effort. However,
if no validity test of the result is available, one can only guess that this is a global
optimum.

Cost Constrained Tuning

This is an on-line tuning method which enables one to choose the range of the
computational cost allowed for the search. Choose a large integer T , a small real
! > " , and a stopping criterion of the form s(t!) 6 ! , with the (approximative)
constraint that t! 6 T . If the scales of the different variables are not equal, consider
only the largest one, or eventually choose an! value for each variable in such a way
that !i = c(si(0)� ") + "; i = 1:::n, where c is a small positive constant. Clearly
T is an approximation of the maximum number of function evaluations allowed
for the search, with a precision criterion ! in 
 . After the algorithm statement, we
have:

s(t!) = (s(0)� ")�(1�w!)t! + " = ! )
t! =

1
(1 �w!) ln�

ln
�

! � "

s(0)� "

�
;

where w! is the frequency of winning trials at stopping criterion time. w! is a
random variable whose law depends on the problem and on the tuning, however
one can estimate that 0 < w! 6 1=2 in most cases. Assuming this, we obtain:

ln
�

! � "

s(0)� "

�
= ln� < t! 6 2ln

�
! � "

s(0)� "

�
= ln� ' T;

then we take:

� = exp
�

2 ln
�

! � "

s(0)� "

�
=T

�
=

�
! � "

s(0)� "

�2=T

:

If T is sufficiently large, one can obtain a stable result (or a global extremum),
but this cannot be verified using only one run. If no validity test of the result is
available, one can use two different costs (say T1 and T2) and perform the two
corresponding runs. Then the global cost will be comprised between (T1+T2)/2
and T1+T2. In general, there is little chance of obtaining two similar results if these
are not stable solutions.



52 PIERRE COURRIEU

Off-Line Tuning

Performing an off-line tuning, one must determine an � value or an �-function
(of complexity variables) which will provide reliable results with minimal com-
putational cost for a large class of problems. Given a particular problem, we first
must find a minimal � value which provides stable results. Given the convergence
properties illustrated in Table VI, this reduces to a one variable uniextremal opti-
mization. Hence, variants of usual local search methods, such as bisection type
procedures, can be used, and the convergence towards an optimal tuning can be
guaranteed. Now, for the purpose of an application, it is not necessarily relevent
to find an exact optimal tuning for a particular problem, and one has to take into
account the computational cost of the tuning procedure itself. In particular, we
have to take into account the fact that the computational cost increases quickly as
� tends to 1, since this cost is approximately proportional to j1= ln�j (see previous
section). Hence, we must define a tuning procedure which avoids large overesti-
mating of � and repeated runs using overestimated � values. As an example, the
following procedure provides quite good results:

fparameters: �0; �1: two initial low values of �;
N: critical number of repeated runs; g
ffirst approximationg f0 := Hyperbell(f; �0);
BEST := f0; f1 := Hyperbell(f; �1);
if (f1 better than BEST) then BEST := f1;
k := 1;
while (fk�1 6= BEST) or (fk 6= BEST) do

begin
k := k + 1;

�k :=
� jfk�1 � fk�2j
jfk�1j+ jfk�2j

�0:1

;

�k := (�k�1 + �k)=(1 + �k);
fk := Hyperbell(f; �k);
if (fk better than BEST) then BEST := fk;
end;

ffinal tuningg
k := k � 1;
r := 1;
repeat

repeat
fk := Hyperbell(f; �k);
r := r + 1;

until (r = N) or (fk 6= BEST);



THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 53

if (fk 6= BEST) then begin
r := 0;
k := k + 1;

�k :=
� jfk�1 � BESTj
jfk�1j+ jBESTj

�0:1

;

�k := (�k�1 + �k)=(1 + �k);
if (fk�1 better than BEST) then BEST := fk�1;
end;

until (r = N );

Note that the differences (6=) have to be tested with finite precision (e.g. 15 signif-
icant decimal digits). The expression of �k can be modified. For example, using
�k = 1 provides an � sequence similar to the one reported in Table VI (with �0

= 0.8 and �1 = 0.9). The choice of N (critical number of repeated runs) depends
on the desired reliability of the tuning. The “first approximation” part of the pro-
cedure can also be used as an on-line tuning procedure. This can be interesting
because the procedure ends when a result stability criterion is satisfied, however
the computational cost is not controlled for.

The tuning procedure was applied to elliptic Fekete points’ problems of var-
ious orders. Main results concerning orders 10, 11 and 12 are reported in Table
VII. Given the �-function (of the number of variables) previously obtained for
uniextremal functions (see the “complexity study” section), it was assumed that
� > �1 = 0:8 + 0:2(1� 1=d). Tuning costs are total numbers of function evalua-
tions. The first approximation tuning cost can be viewed as an on-line tuning cost
with stability criterion. The estimated maximum of f was always obtained in the
first approximation procedure with 15 significant digits. The final tuning procedure
only minimized the solving time for the specified reliability criterion (N = 10).

The remaining problem concerns the generalization of tuning to a large class
of problems. Depending on the application, the problems can differ only by a
random set of data, or (also) by systematic complexity factors (e.g. number of
variables). In the first case, a quite evident method consists of selecting a sample of
problems and performing the tuning for each problem, which provides a sample of
tunings. Then one can determine an upper boundary of � using a simple confidence
interval method. However, the distribution of �, considered as a random variable,
is very asymetrical. Hence, it is better to compute the confidence interval for the
t! variable (by usual statistical methods), and then to compute the corresponding
upper bound of � using the relations stated in the “cost constrained tuning” section.
The second case is the most frequent in practice. Unfortunately, it is also the most
problematic case because available empirical complexity factors are not always the
relevent ones, or the�-function is not a simple monotonic function of these factors.
Sometimes, it is easy to find an appropriate approximation of the �-function, as
we did in the “complexity study” section. However, if one considers for example



54 PIERRE COURRIEU

Table VII. Results provided by the tuning procedure for Fekete points’ problems of order 10, 11, and
12. �0 = 0:8; �1 = 0:8 + 0:2(1 � 1=d); N = 10.

f10 f11 f12

� 0.999609313189144 0.999654352379111 0.998184163562489
maximum of fd 5.74088185070187E+6 9.99798997082430E+7 2.41785163922926E+9
mean solving time 90807 122889 21645
first approx. cost 712488 1051620 121779
total tuning cost 1798733 2591413 352330

the set of elliptic Fekete points’ problems, the �-function of d seems hard to
predict. In such a situation, a practical solution would probably be to implement
the tuning values for the most frequent problems, and to implement an on-line
tuning procedure for the remaining cases.

5. Conclusion

The Hyperbell Algorithm clearly exhibits high performance levels on difficult
global optimization problems. The use of Cauchy distributions in this type of
framework is visibly more appropriate than the use of more usual distributions.
Complexity effects which were experimentally tested are close to linear, however
not all the relevent complexity factors are identified. Simple tuning procedures are
available, however verifying reliability always requires a non negligible amount
of computational effort. Further research efforts are needed to develop an efficient
way of determining the best algorithm tuning for each problem or application. This
requires a theory of problem complexity which is not available to date. Despite
these remaining questions, the Hyperbell algorithm is a useful tool in practice.
It is very easy to implement and, clearly, it provides reliable results with fast
convergence.

References

Baritompa, W. (1993), Customizing methods for global optimization – a geometric viewpoint. Journal
of Global Optimization 3, 193–212.

Boender, C.G.E., Rinnooy Kan, A.H.G., Stougie, L., Timmer, G.T. (1982), A stochastic method for
global optimization, Mathematical Programming 22, 125–140.

Breiman, L., Cutler, A. (1993), A deterministic algorithm for global optimization, Mathematical
Programming 58, 179–199.

Courrieu, P. (1993), A distributed search algorithm for global optimization on numerical spaces.
RAIRO: Recherche Opérationnelle / Operations Research, 27(3), 281–292.

Csendes, T. (1985), A simple but hard-to-solve global optimization test problem, IIASA Workshop on
Global Optimization, Sopron (Hungary).

Dekker, A., Aarts, E. (1991), Global optimization and simulated annealing, Mathematical Program-
ming 50, 367–393.

Floudas, C.A., Pardalos, P.M. (1990), Collection of Test Problems for Constrained Global Optimiza-
tion Algorithms, Springer-Verlag, Lecture Notes in Computer Science 455.



THE HYPERBELL ALGORITHM FOR GLOBAL OPTIMIZATION 55

Goldberg, D.E. (1989), Genetic Algorithms in Search, Optimization, and Machine Learning, Addison-
Wesley, Reading, Massachusetts.

Griewank, A.O. (1981), Generalized descent for global optimization, Journal of Optimization Tech-
niques and Application 34, 11– 39.

Holland, J.H. (1975), Adaptation in Natural and Artificial Systems, The University of Michigan Press,
Ann Arbor.

Horst, R., Pardalos, P.M. (1995), Handbook of Global Optimization, Kluwer Academic Publishers,
Dordrecht.

Ingber, L. (1989), Very fast simulated re-annealing, Mathl. Comput. Modeling 12(8), 967–973.
Ingber, L., Rosen, B. (1992), Genetic algorithms and very fast simulated reannealing: a comparison.

Mathl. Comput. Modelling 16(11), 87–100.
Pardalos, P.M. (1995), An open global optimization problem on the unit sphere, Journal of Global

Optimization 6, 213.
Pintér, J. (1988), Branch-and-Bound methods for solving global optimization problems with Lips-

chitzian structure, Optimization 19(1), 101–110.
Rinnooy Kan, A.H.G., Timmer, G.T. (1987a), Stochastic global optimization methods. Part I: clus-

tering methods, Mathematical Programming 39, 27–56.
Rinnooy Kan, A.H.G., Timmer, G.T. (1987b), Stochastic global optimization methods. Part II: multi

level methods, Mathematical Programming 39, 57–78.
Romeijn, H.E., Smith, R.L. (1994), Simulated Annealing for constrained global optimization, Journal

of Global Optimization 5, 101–126.
Shub, M., Smale, S. (1993), Complexity of Bezout’s theorem III. Condition number and packing,

Journal of Complexity 9, 4– 14.
Solis, F.J., Wets, R.J-B. (1981), Minimization by random search techniques, Mathematics of Opera-

tions Research 6(1), 19– 30.
Wood, G.R. (1992), The bisection method in higher dimensions, Mathematical Programming 55,

319–337.
Zabinsky, Z.B., Smith, R.L., McDonald, J.F., Romeijn, H.E., Kaufman, D.E. (1993), Improving

Hit-and-Run for global optimization. Journal of Global Optimization 3, 171–192.
Zhigljavsky, A.A. (1991), Theory of Global Random Search, Kluwer Academic Publishers, Dordrecht.


